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Since the dawn of mathematics, historians and others have found many isolated instances
of extrapolation being used in numerical calculation. However, the first serious proponent
seems to have been Richardson (1923). His technique, aka “the deferred approach to the
limit,” can be applied to the numerical evaluation of any quantity L, which can be defined
as a limit as h approaches zero of an approximation L(h) when this L(h) has an expansion
of the form

L(h) = L + a1h + a2h
2 + .... + arh

r + O(hr+1). (1)

In other words, the discretization error L(h) − L has a power series expansion in the pa-
rameter (usually a step length) h. Richardson suggested his technique particularly for large
calculations. For example, L might be the solution at some point of a differential equation
and L(h) its approximation obtained by using a discrete analogue based on a finite step
length h. Richardson’s technique comprised evaluating several relatively poor approxima-
tions based on different moderate values if h, and then extrapolating these values to obtain
an approximation for L(0). This was proposed as an alternative to using a single, much
smaller value of h. A strength of this approach is that numerical values of the coefficients ai

are not needed. We simply need to know that these coefficients exist.

During the subsequent 25 years, Richardson’s approach was consistently ignored or mis-
understood in environments where the analysis was available and, where in retrospect, the
method would have been powerful. But, in the second half of the twentieth century, Richard-
son’s idea was widely exploited in several numerical areas. Many expansions that can be
used for extrapolation have been discovered, some of which are displayed below. In the dis-
cipline of numerical quadrature, this body of theory is sometimes referred to as extrapolation
quadrature. This theory has several aspects. The first, dealt with in this talk, is the estab-
lishment of the expansion. But also of significant importance are questions relating to its
use: in particular, selecting which values of h to use, organizing such a calculation, avoiding
amplification of roundoff and other calculational error, and comparing other methods for
handling the same problem.
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This talk was devoted exclusively to the first problem, the discovery of suitable asymptotic
expansions on which to base the expansions and is restricted to numerical quadrature.

In 1955 this technique was applied somewhat diffidently by Romberg to the numerical
integration of a C(∞) integrand f(x) over a finite interval [0, 1], using for L(h) the m = 1/h
panel trapezoidal rule approximation, which we shall denote by Q(m). In this case, the
expansion (1) turns out to be the classical Euler-Maclaurin asymptotic expansion

Q(m)f − If =
∑

Bj/m
j. (2)

Romberg used a sequence of panel numbers m = 1/h that were in geometric progression.
During the next ten years, a systematic development of this simple theory took place. The
Neville algorithm was used to carry out the extrapolation in an iterative manner. The
tableau associated with this algorithm became known as the Romberg T-table. It transpired
that Q(m) could be generalized to become the m-copy version of any quadrature rule Q. This
gave an expansion that, depending on the nature of Q, might be even in character and might
have other specified coefficients missing. One could use other sequences of panel numbers m
and still form a Romberg table of extrapolants. Each element Tk,p of this table is a somewhat
involved linear sum of function values and so is, in its own right, the result of a different
quadrature rule evaluation. Each is of specified algebraic and trigonometric degree. But,
significantly, the expansion (2) could be regarded as a generator of quadrature rules.

The presentation included a short discussion about the circumstances under which the
Euler-Maclaurin expansion converges and what happens when f(x) is C(∞) and periodic
with period 1.

In the case when f(x) is regular, the same theory has been applied in a multidimensional
setting. The generalization to the hypercube [0, 1]s is straightforward. The same generaliza-
tion to the s-dimensional simplex (or even to the triangle) is quite difficult. At first, careful
attention has to be paid to what is meant by Q(m). Several definitions are possible, but
each produces a consistent mathematical theory. The resulting asymptotic expansion is of
identical form to that of the hypercube. But, the coefficients have quite different representa-
tions. In cases where simple integral representations of the coefficients in the one-dimensional
expansion (2) are known, these generalize readily to the hypercube, and not at all to the
triangle or simplex.

In 1965, the one-dimensional theory was enriched by the discovery of a more general
version of (2). This is usually attributed to Lyness and Ninham, but in fact Navot had
discovered it several years previously.

Let f(x) = xαg(x) with g(x) regular, and let

Qf =
∑

wjf(xj)
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be any quadrature rule approximation to the exact integral

If =
∫ 1

0
f(x)dx,

this approximation being exact for constant f , that is,
∑

wj = 1; and let Q(m)f denote the
m-copy version of Q. Then the following is an asymptotic expansion for the error functional

Q(m)f − If =
∑
j=1

Aj+1+α/m(j+1+α) +
∑
j=1

Bj/m
j, (3)

where the coefficients Aj and Bj do not depend on m. There is a large literature about
this sort of expansion. The result generalizes to negative α, the integral If being an HFP
integral. When α is a negative integer, an additional term Klogm is required in the expan-
sion. A simple generalization of (3) is available for integrand functions that have algebraic
singularities at both ends of the integration interval. And there are corresponding expan-
sions for integrand functions having joint algebraic-logarithmic singularities (ones of the form
xα logn x) at one or at both ends of the integration interval.

The next major development appeared in 1976. This extended Navot’s result to integrand
functions f(x) having a singularity (of a specified type) at a vertex of the s-dimensional
hypercube [0, 1]s of integration. A homogeneous function h(x) of degree α is one that satisfies
h(λx) = λαh(x) for all λ > 0. The new result applied to f(x) = hα(x)g(x), where hα(x)
is a homogeneous function of degree α and has no singularity in the integration hypercube
except at the origin; and, as usual, g(x) is regular in this hypercube. For such a function,

Q(m)f − If =
∑
j=1

(Aj+s+α + Cj+s+αlogm)/m(j+s+α) +
∑
j=1

Bj/m
j . (4)

The coefficient Cλ = 0 unless λ is an integer. The function rα and many others are homoge-
neous.

Subsequently, expansions were derived for many variants having joint algebraic loga-
rithmic singularities at a vertex, and having different singularities, each being of this same
general type, located at different vertices. The incorporation of line singularities located
on an edge or face has proved difficult. At present, in two dimensions, there is a known
expansion for an integrand having a ”full corner singularity”, that is

f(x, y) = xαyβrρg(x, y)

The corresponding theory for the simplex

Δ : xi ≥ 0; i = 1, 2, ...s;
∑

xj ≤ 1

can be derived geometrically from the corresponding results for the hypercube (with singu-
larity) and the result for the simplex (with no singularity).
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It is well known that when two regions are related by an affine transformation, a quadra-
ture rule for the one region can be transformed to one for the other by using the same affine
transformation. This is valid for quadrature rules with weight functions, but of course the
weight function has to be transformed too. An implication is that a Gaussian rule for the
triangle Δ above, with weight function 1/r at one vertex, would be basically different from
any corresponding Gaussian rule for an equilateral triangle with the same weight function
1/r at a vertex. If one has available a set of weights and abscissas for one, they are irrelevant
for the other. On the other hand, the affine transformation of a homogeneous function is
another homogeneous function of the same degree. Thus, any extrapolation technique for
one can be used immediately on the other. This circumstance does not seem to be widely
known; but it provides a compelling reason for using extrapolation quadrature over polygonal
regions of integrand functions having algebraic singularities at vertices.

Recent results include extensions to Jacobian-free integration over curved surfaces and
to integrands involving the Laplacian operator. Results obtained by using Sidi transforma-
tions may be extrapolated. The numerical evaluation of Hadamard finite part integrals is
being pursued by Monegato. And, currently, Verlinden is developing a new approach to
constructing all the standard expansions within a single framework, based on the Mellin
transform.

The talk finished with a numerical example in which the product mid-point rule was
used very successfully to integrate the function cos[arctan(x/y)] over the square [0, 1]2. This
integrand is not Hölder continuous at the origin.
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